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Abstract

There is an ongoing debate about whether human rights standards have changed over the last 30
years. The evidence for or against this shift relies upon indicators created by human coders reading
the texts of human rights reports. To help resolve this debate, we suggest translating the question
of changing standards into a supervised learning problem. From this perspective, the application of
consistent standards over time implies a time-constant mapping from the textual features in reports
to the human coded scores. Alternatively, if the meaning of abuses have evolved over time, then the
same textual features will be labeled with different numerical scores at distinct times. Of course,
while the mapping from natural language to numerical human rights score is a highly complicated
function, we show that these two distinct data generation processes imply divergent overall patterns
of accuracy when we train a wide variety of algorithms on older versus newer sets of observations
to learn how to automatically label texts with scores. Our results are consistent with the expectation
that standards of human rights have changed over time.
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We apply a text-as-data approach to provide new insights into whether the standards of judging
human rights behaviors may be evolving over time. Using the framework for supervised learning, we
find that using older human rights reports to automatically learn the rules by which teams have coded
human rights scores lowers the accuracy of predicted scores generated from recent reports. This pattern
provides new evidence of meaningful underlying changes in the coding of quantitative human rights
measures over time. Human rights measures may need to be calibrated for these dynamic information
effects to increase their comparability over time and space. More broadly, these changes may not simply
represent linearly increasing standards of human rights, but involve more complicated patterns of distinct
new aspects being judged in more recent reports.

1 Motivation

A debate has emerged around the question of whether changing standards of human rights have polluted
highly influential quantitative measures of state practices. Clark and Sikkink (2013), building on work
by Keck and Sikkink (1998), argue that the greater availability of information on abuses around the
world over time has led to differences in the newer versus older textual reports that are used to code
the Political Terror Scale (PTS) and the Cingranelli-Richards Human Rights Data (CIRI). One piece of
evidence offered to support this conjecture is that the reports have become longer in more recent years.
Fariss (2014) extends these arguments to suggest that numerical scores may indicate deteriorating human
rights practices over time, not because actual human rights violations are increasing, but because later
violations are more likely to be recorded in the underlying texts and in the human coded scales.1

There are several potential mechanisms by which information effects could alter human rights scores.
Coding information effects could occur when human coders read texts differently across years. For
example, it is likely that coders have access to more information about countries in recent times, and so
might inadvertently augment their scores in recent years with information that is not in the text, while
they rely more closely on the text in earlier years. Compositional information effects, alternatively, can
occur when different aspects of human rights violations are recorded in the texts over time. It could
be the case that details of violations, such as sexual violence, are discussed systematically in later but
not earlier reports. When human coders read these recent reports, seeing more evidence of violations, a
worse numerical score may be recorded. Fariss (2014) uses word counts of the country-report texts as
evidence of dynamic instability in the composition of the documents by agencies such as the US State
Department and Amnesty International, while suggesting other potential measurement concerns. More
recently, Bagozzi and Berliner (forthcoming) discover evidence of changes in the underlying distribution
of words in the country-reports over time. Together, this research suggests that at least compositional
information effects might bias human rights data over time.

In a response to these arguments, Richards (2015) finds little evidence of the “information effects”
noted by Clark and Sikkink (2013). He argues that the aggregate human rights scales are stable, with
few exceptions. Richards also notes that it is not the length of the documents used to code the scores
that matters, as suggested by previous work, but the specific words used in the reports. Terms such as
“widespread”, “systematic”, “extensive” cause a state to be coded as having poor respect for an aspect
of human rights, regardless of the length of the report, as is consistent with the CIRI codebook. Thus,
Richards (2015) is largely arguing that coding informational effects are negligible, even if compositional
effects, leading to longer reports, are present, since there should be a constant mapping from key words
that appear in the text to human rights scores.

1These authors also address other potential issues with the creation of scores over time such as possible ceiling effects. We
focus on their arguments relating to changing standards over time for this letter. See Clark and Sikkink (2013); Fariss (2014).
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If we are to assess the impact key concepts such as regime type and political contention have on
human rights practices, we must understand whether the human scoring of texts is consistent over time.
Moreover, The quantitative study of human rights is likely to continue its rise in prominence in the future
as concepts such as Responsibility to Protect and international humanitarian interventions in regional
crises continue to draw significant global attention.2

2 Approach

We contribute to this debate by applying a research design strategy inspired by work in machine learn-
ing to compute how the underlying texts have been translated into the Political Terror Scale (PTS). We
treat the conversion of the natural language in the human rights reports into quantitative scores of human
rights practices as a supervised learning problem (Kotsiantis, 2007; Mitchell, 1998). Supervised learning
is a branch of Machine Learning whereby researchers attempt to compute a mathematical representation
of the unknown process by which input features, such as word counts from texts, predict continuous or
discrete response values, such as quantitative human rights scores. Crucially, since the goal of machine
learning is to build models that generalize to unseen data, researchers in this area have emphasized strate-
gies that can identify overfitting the sample data while avoiding limitations that lead to underperformance
(Flach, 2012).

Our aim in this letter is to use supervised learning algorithms to evaluate competing arguments in
an important theoretical debate. The two sides of the information effects debate can be represented by
two distinct sets of heuristics for building an algorithm that attempts to learn how the lexical features of
the human rights texts are mapped into quantitative scores by human coders. We define this map as a
function yit = ft(xit), where yit is a known scalar human rights score for country i ∈ (1 . . . N) at time
t ∈ (1 . . . T ), xit is a known vector of textual features such as term frequencies, and ft(·) is a an unknown
function projecting xit to yit, that can depend on time. If the informational content within the text that
is relevant for coding a particular human rights score has changed, either due to coding or compositional
effects as suggested by Clark and Sikkink (2013), then ft(·) 6= f(·), ∀t ∈ (1, . . . , T ). Therefore, an
algorithm that attempted to learn the function that created the examples in a recent training set, ft(xit)
by training a model on older instances would instead be fitting a representation of ft−i(xi,t−j), t >
j > 0. This algorithm would be learning an older version of the function, as opposed to the process
that generated the test set. While this overfitting is not observable within the training window, models
trained on stale instances would not generalize to recent out-of-sample cases, degrading out-of-window
performance relative to models trained on instances that were in closer temporal proximity to the test
set.3 Conversely, if the information in the texts that is relevant for creating quantitative scores has been
stable over time, even if texts are longer or more embellished, as suggested by Richards (2012), then
there should be a consistent translation from the texts to the measures across years, and thus ft(·) =
f(·),∀t ∈ (1, . . . , T ). In the appendix, we provide simulation evidence that we can differentiate static
and changing patterns of coding inputs into a score, utilizing this research design.

Because we are using the underlying texts, we are also able to examine which lexical features have
changed in importance over time (Grimmer and Stewart, 2013; Quinn et al., 2010; Monroe, Colaresi and
Quinn, 2008).

2See also Fariss (2014) and Bagozzi and Berliner (forthcoming).
3We use the terms in-window and out-of-window to differentiate our sampling strategy from those that measure accuracy

on the observations that are specifically used to train fitted models (in-sample accuracy).
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3 Empirics

To assess the arguments above, we use the text from the State Department Human Rights Reports for
the years 1978 through 2010.4 Each document (yearly country-report) is represented by a feature count
vector, modeled as a bag-of-words.5 Using these word features we train a number of machine learning
algorithms: Naive Bayes (NB), Logistic Regression (LR), Support Vector Machines (SVM), and Random
Forests (RF), as well as a majority vote ensemble classifier6 to predict a given state’s PTS score in a
particular year.7

For each classifier we divide the dataset into two periods: (1) 1978-2005 and (2) 2006-2010 and use
(1) to draw the training set and measure in-window performance and (2) for out-of-window testing. All
the models are computed and evaluated first within a specific training window with 5-fold 8 cross vali-
dation, to check the performance of the model on temporally proximate data, then out-of-window using
set (2) (2006-2010), allowing for meaningful comparison of accuracy for models trained on different
epochs.9

The top graph in Figure 1 displays the out-of-window prediction accuracy10 for each of our algo-
rithms trained on unique 10 year rolling windows.11 If there were no information effects, and scores
were coded consistently from the text, we would expect out-of-window accuracy to be similar across
sampling windows, as the features that predicted particular PTS scores in the early period would predict
the same in the later period. However, we find that as the reports used to fit the model become more dis-
tant from the test set (2006-2010), the accuracy falls. This is a pattern that is consistent with information
effects and the time-varying generative model from the simulations in the appendix. Since the algorithm
is perfectly reliable in how it maps words into predicted PTS scores12, then there is something else that
is unique to the human coded scores that is reducing the accuracy.

The constant in-window accuracy, computed using hold-out evaluation set within the training win-
dow, presented in the middle plot in Figure 1 suggests that the later scores are not more difficult to learn
from the texts than earlier periods across a number of different algorithms.13 Within a given temporal
range, an algorithm can learn how to produce PTS scores with an average accuracy of approximately .75.
The set of patterns we observe – changing out-of-window accuracy with consistent in-window accuracy
– points to a dynamic data generation process, but also supports Richards (2015)’s contention that the
coding process was not necessarily noisier or more difficult in earlier periods.14

4While other reports, notably Amnesty International, may communicate different facets of human rights, investigating the
systematic differences between reports is beyond the scope of this letter.

5We also explore the role of higher order n-grams, as it is possible that these contain additional information.
6We thank the editor for this suggestion.
7We run a total of 96 models, not counting the ensemble voting classifier. A more in-depth review of the data collection

process and the algorithms used can be found in the supplemental appendix.
8We also tried 10-fold cross validation and there is no meaningful difference in the results.
9We choose this split to mirror the arguments made by Fariss (2014) and Clark and Sikkink (2013) as they relate to changes

in human rights over time. Holding out more recent data will allow us to successively draw older and older training windows.
Accuracy is presented in the main text and Precision, recall, and F1 were also computed and available in the supplemental
appendix.

10Out-of-window accuracy is the proportion of cases that a classifier correctly predicts. A mistake of one level (predicting 3
when the actual value was a 4), is treated identically as missing by 4 levels. We present more complete confusion matrices in
the appendix.

11Since PTS has 5 categories, the baseline accuracy for an algorithm that randomly guesses is .2.
12With a given model, the identical text will always map to the same score.
13We also explore, using our random forest ensembles, the in-window accuracy using 5-fold cross-validation. The same flat

within-window pattern holds.
14As we discuss further below, another interesting test of these propositions would be to analyze the patterns of inter-coder

reliability over time.
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Accuracy and Bias Across Algorithms Over Time

Figure 1: The out-of-window accuracy for algorithms trained on overlapping/rolling 10 year windows of
the lexical report features in the top plot illustrates an upwards trend, consistent with a dynamic human
rights score generation process. The in-window accuracy, calculated on a held-out evaluation set from
within the time period used to train the models, is plotted in the middle window, and by comparison
is flat, suggesting that the PTS data has not grown more difficult to learn over time. The lower plot
illustrates the average bias in the out-of-window period (predicted value - observed value). There is not
a consistently negative bias for models using older data. The black dashed line in each plot represents an
ensemble majority vote classifier that takes the predictions of each of the other algorithms as input, and
predicts the class that has the plurality of votes. The keys for the algorithms are defined in the appendix.
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Another piece of evidence can be found in the direction of the mistakes that our algorithms are
making. Fariss (2014) suggests that standards for human rights have grown more stringent over time,
leading to higher scores in later years even if state behavior has remained consistent. If the human
composers of the text applied these more stringent standards in later years utilizing new, more extreme
language, then our algorithms that learned the mapping between the text and the score in earlier years
would be systematically lower (indicating less egregious violations) than the actual scores in later years;
since the more stringent standard would have been applied by humans and encoded into terms that were
not available to our algorithms.15 The bottom plot of Figure 1 presents the bias, our forecast minus the
actual value, across our classifiers for different rolling windows on the out-of-window test set.16 We do
not see a clear pattern of a negative bias across the algorithms. In fact, several of the algorithms have a
positive bias, suggesting that the actual human scores were lower (fewer abuses) than expected from the
text alone in the later reports.

Next, we turn to what is changing within the algorithms that allows them to be more accurate when
trained on later, as compared to earlier, human coded reports. We present a selection of terms that either
are in the top 25 highest ranked relative feature importances (first six rows) drawn from the Random
Forests algorithm or are flagged in the PTS codebook or by Richards (2015) as keywords that should
consistently imply a specific score (last two rows). The rank across each of our fitted windows is then
logged and displayed in figure 2.17

The plot reveals several interesting patterns that provide some insights into the nature of the changes
in the State Department text over time. In the top two rows, we present several of the top terms that
illustrate how information for violations themselves are discussed. The term “according” is often used in
recent texts to reference specific sources of information and has increased (particularly for 4s), while the
less specific term “reported”, has declined in importance. Interestingly, two terms that signal a discussion
of meaning and reliability of information, the terms “interpretation” and “reliable” have declined in
importance for a score of 5. Likewise, in the second row, we see that “committed” signaling a discussion
of who perpetrated an abuse in this context has increased while the more general “scale” has declined;
instead of talking of overall victims, there is a shift to specific “populations” that might be effected.
There is also a shift in the actors being referenced. There is an increase in the importance of “armed”
groups, as opposed to formal “armies” and “regimes”, as well as talking about “commanders” and how
fighters are “conscripted”. Similarly, there is an increasing focus on “civilians”.

One of the more striking changes over time is the number of different types of abuses that are in-
creasingly influential in the random forest predictions over time. There is an increase in discussion of
“internally” “displaced” people, as well as “humanitarian” concerns such as “food”. The use of “mines”
and events where victims were “raped” are identified as crucial in more recent, but not past, scoring of
human rights texts.

On the other hand, there is not clear evidence that terms that would encode the severity of violations
have shifted. There were changes in the importance of terms such as “frequently”, “numerous”, and
“widespread”, particularly for scoring a 4. However, words noted as important in the PTS codebook
such as “regularly” and “routinely” provide somewhat less predictive power overall, but are consistent
over time (see the last two rows). The use of the term “common” is consistently important. Of course, as

15Another possibility that our research design helps to alleviate is whether the actual human coders themselves are seeing the
same language but coding different scores at distinct times.

16If a classifier’s best guess for a countries score in a year, given the report, is a 3, but the actual human coded score was a 4,
the bias is −1.

17The top terms are selected based on the highest feature importance averaged over the first and last three windows of the 10
year rolling models. The full output for these top features can be found in the supplemental appendix. The terms are unstemmed
in our analysis, so we include several tokens that represent potentially important stems.
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Figure 2: Each subplot presents the descending rank (logged) of select terms based on their feature
importance for predicting PTS label 4 (red) and 5 (blue) using the unigram Random Forests Model and
GINI impurity. The last year of the 10 year rolling training windows are presented on the x-axis. The y-
axis is reversed so that greater importance values (lower ranks) are higher on the plot. Feature importance
is computed on decision trees using unigram features within a random forest. The trees in the forest are
trained to classify a report as either a 4 or not, and then as either a 5 or not. We use the change in gini-
impurity from parent to child nodes, weighted by the number of observations that reach each node as our
feature importance metric. These values are averaged across the trees. A flat line represents consistent
importance in predicting recent scores over the past training windows. The first six rows of plots are all
within the top 25 ranked features for either the earliest of the latest windows. The last two rows include
words that we pulled from the PTS codebook and Richards discussion.
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these words are generally used to modify other important human rights features, we might find them to
be more important if they were linked to the aspects they modify, such as “routinely killed” or “regularly
engaged in killings”.

Our results provide some support for Clark and Sikkink’s claim that aspects of human rights may
receive greater focus in later reports. However, these changes could be due to coder effects, where
the humans scoring the reports are reading the reports from earlier years differently than later years, or
because of specific compositional effects where terms that coders use to assign specific scores appear
or disappear from texts over time. Either way, we have provided evidence that there are more than
superficial changes in the underlying process that generates human rights scores.

4 Discussion

While we do not claim to have settled the debate over information effects in human rights scores over
time, we do believe our approach has provided new insights into whether the standards of judging state
behavior may be evolving, while also providing a framework for using supervised learning to inform
theoretical debates. We find that the older the human rights reports used to learn the rules by which
teams have coded human rights scores, the lower the accuracy of predicted scores generated from recent
reports; suggesting there is some underlying change in the coding of the human rights measures from
the texts over time. Next, research teams should begin building models with time-varying parameters
that can attempt to learn the dimensionality and evolving structure of human rights scores. There are
already several useful projects ongoing in this area (Bagozzi and Berliner, forthcoming; Fariss et al.,
2015). In parallel, it would be useful to return to analyzing the relative patterns of human coders. Our
argument suggests that inter-coder reliability might fall as new documents, draw from a different time
period than the set used to train coders, are scored. In this future exercise, humans would take the place
of our algorithms, and would be trained on documents from a specific time-window.18

More generally, as the role of prediction in political science continues to grow (Ward, 2016), we hope
that our letter makes the case that machine learning approaches can be deployed to create new knowledge
on core political science questions. This approach can still be heavily grounded in theory and domain
expertise, while allowing researchers to address questions from new angles. In particular as many studies
implicitly or explicitly refer to components of text, such as word counts, or lexical features, the use of
computational text analysis, coupled with machine learning, may be particularly fruitful.

Finally, using bag of word assumptions we were able to develop an automated coding system for PTS
that achieves out of sample accuracy well above 70%, a large improvement over random chance (20%).
By accounting for syntactic features of the text this accuracy could likely be improved. Such a system
could provide a means to develop a quicker and more consistent coding of human rights data over time,
possibly helping to alleviate some of the concerns posed by Clark and Sikkink (2013).
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